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Abstract

In a one-dimensional (1D) homogeneous space, the classic Yee finite-difference timedomain (FDTD) algorithm is

numerically exact when operated at the Courant stability limit. Numerically exact is taken to mean that, to within

the sampling limit imposed by the discretization in space and time, the only errors are due to the finite precision of

digital computer arithmetic. Unfortunately, the Yee algorithm is not numerically exact in two or more dimensions.

However, using the design shown here, three-dimensional (3D) spatial differential operators can have 1D dispersion

properties. Just as the space and time errors can be made to cancel in the 1D Yee algorithm, 3D algorithms (for hyper-

bolic systems of coupled first order equations) in an unbounded homogeneous space can be constructed which are, in

theory, numerically exact. The differential operators presented here extend over a localized non-zero volume, unlike the

usual nabla (or Del) operator which acts at a point. Our computer implementations are based on reconstruction meth-

ods, producing global range operators, thus our implementations of these operators are computationally expensive. A

sample implementation of an approximate electromagnetic algorithms is described and is shown to produce results that

are superior to the classic Yee algorithm for the cubic resonator problem.
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1. Introduction

The ‘‘magic time step’’ 1D Yee algorithm is a numerically exact differential equation solver [1,2]. To

obtain theoretically similar performance in 3D, we express the divergence, gradient, and curl operators

as derivatives with respect to a single variable. The spatial derivative operators presented here provide
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(theoretically) numerically exact solutions when used with a standard Yee ‘‘leap-frog’’ central difference

time derivative. Once the differential operators are defined a dispersion relation is derived for hyperbolic

systems of two coupled first-order equations and a specific dispersion relations for 3D electromagnetics

algorithms is then derived. With the specified choice of algorithm parameters, the dispersion analysis shows

theoretically exact propagation. An exact theory can be used as the basis for designing practical approxi-
mations. As a test of these volumetric differential operators, acoustic and electromagnetic algorithms have

been coded, however, only electromagnetic results are presented here. The performance of this algorithm

and the classic Yee algorithm are shown for the resonator test case.
2. Spherical volume differential operators

The spherical differential operators needed for exact algorithms can be defined as follows. Start with the
gradient identity, and the closely related Gauss�s divergence and vector Stokes� theorems:
Z Z Z

B

rwdv ¼
Z Z

oB

n̂wds, ð1Þ

Z Z Z
B

r � ~W dv ¼
Z Z

oB

n̂ � ~W ds, ð2Þ

Z Z Z
B

r� ~W dv ¼
Z Z

oB

n̂� ~W ds: ð3Þ
Assume the fields, surfaces, and volumes satisfy the conditions necessary for the theorems (1)–(3) to hold.

Choose a sphere of radius q P 0 as the shape of the volume B. Now define the spherical gradient, diver-

gence and curl as the scalar derivative of the corresponding integral identity:
rswð~rÞ ¼
o

oV

Z Z
oB

n̂wð~r þ~r0Þds, ð4Þ

rs � ~W ð~rÞ ¼ o

oV

Z Z
oB

n̂ � ~W ð~r þ~r0Þds, ð5Þ

rs � ~W ð~rÞ ¼ o

oV

Z Z
oB

n̂� ~W ð~r þ~r0Þds, ð6Þ
where the derivative is with respect to the volume V of sphere B, V ¼ 4
3
pq3 and where primes indicate vari-

ables of integration when necessary. The symbol $s is used to denote a nabla operator that measures over a

finite spherical volume (not the usual point operator). With the choice of spherical volumes, we can for

illustrative purposes write out details of the right-hand side of (e.g.) (4)
rswð~rÞ ¼
1

4pq2

o

oq

Z Z
oB

ðsin h cos/x̂þ sin h sin hŷþ cos hẑÞwððxþ q sin h cos/Þx̂þ ðy

þ q sin h cos/Þŷþ ðzþ q cos/ÞẑÞq2 sin hdhd/, ð7Þ
where
~r ¼ rr̂ ¼ xx̂þ yŷþ zẑ,

~r0 ¼ qn̂ ¼ qðsin h cos/x̂þ sin h sin/ŷþ cos hẑÞ,
ð8Þ
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and where the variables of integration are the spherical polar angle h and the equatorial angle /. To see that

the spherical deivatives correspond to the usual point derivatives when the sphere size is zero, write the vol-

ume partial derivative as a limit and let F ðV ,~rÞ ¼
R R

n̂ � ~W ð~r þ~r0Þds, in (5)
rs � ~W ð~rÞ ¼ lim
v!0

F ðV þ v,~rÞ � F ðV ,~rÞ
v

V , v P 0, ð9Þ
then set the volume V to zero
rs � ~W ð~rÞjV¼0 ¼ lim
v!0

F ðv,~rÞ � F ð0,~rÞ
v

¼ lim
v!0

F ðv,~rÞ
v

¼ lim
v!0

1

v

Z Z
oB

n̂ � ~W ð~r þ~r0Þds ¼ r � ~W ð~rÞ: ð10Þ
The final line of (10) is a typical definition of the usual point divergence [3], ‘‘typical’’ because the usual
point divergence definition does not need to specify the shape. The volume operator $s is useful because

it is the usual nabla operator when computed with zero radius, while for non-zero radius the operator

can produce exact time-domain algorithms. Eqs. (4)–(6) are the definitions of the space derivative operators

for the present class of exact algorithms. As written, (4)–(6) are functions of the size of the sphere. For some

particular algorithm, the as yet undetermined radius of the sphere is fixed.
3. Stability and dispersion analysis

A simple technique for analyzing the stability of finite difference methods was given by von Neumann

and Richtmyer [4]. In summary, substituting a complete basis set of complex-exponential plane-wave solu-

tions into the finite difference equations of the system converts time and space derivatives into multiplicative

factors. Then the fields are eliminated from the resulting algebraic system to obtain the dispersion relation.

The dispersion relation can be analyzed to obtain stability requirements. The stability conditions are

obtained by examining the dispersion equation for the relationship between the wave vector~k and angular

frequency x.
When the relationship is complex, the result is an unstable algorithm [4] or superluminal propagation [5].

The material parameters are assumed constant in the region of analysis. For a 3D space, plane waves of

arbitrary wave-vector and frequency form a complete basis. While von Neumann did obtain a dispersion

relation (without calling it such), he only considered stability properties. Taflove and Brodwin [6] demon-

strated the utility of analyzing the dispersion relation for understanding propagation behavior, i.e., the

accuracy of the simulation. Thus, the dispersion relation for a time-domain algorithm provides a powerful

tool for analyzing the algorithm for both stability and accuracy.

3.1. Effect on plane waves

In order to derive the algorithm stability properties and dispersion relation the effect of the spherical

volume differential operators on plane waves is required. For simplicity a cubic cell grid of step size Dg will

be used throughout. For a specific implementation of an algorithm a spatial grid will need to be chosen

(e.g., staggered or collocated), at this point we only require a staggered-in-time grid. The staggering or col-

location of the spatial grid need not be specified yet for the volume operators. Given a complex scalar plane

wave with wave vector ~k and frequency x
wð~r,tÞ ¼ eið
~k�~r�xtÞ, ð11Þ
where
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~k ¼ kk̂ ¼ kðsin a cos bx̂þ sin a sin bŷþ cos aẑÞ ¼ kxx̂þ ky ŷþ kzẑ, ð12Þ

the volume derivatives and the usual Yee time derivative are computed. The angles a and b are the spherical

polar and equator angles of the wave vector. The classic Yee algorithm uses central differences to approx-

imate the temporal derivatives. Thus, in the Yee algorithm the temporal derivative of (11) is given by
o
Yee
t wð~r,tÞ ¼ wð~r,t þ Dt=2Þ � wð~r,t � Dt=2Þ

Dt
¼ � 2i

Dt
sin

xDt

2

� �
wð~r,tÞ, ð13Þ
where Dt is the temporal step size, and oYee
t denotes the Yee finite-difference time derivative. The space deriv-

ative operators for an exact algorithm must have the same functional effect on the 3D plane wave as (13) in

order to obtain a functionally 1D dispersion relation for the 3D space. Then it will be possible to choose

values of the algorithm parameters to obtain matched space and time derivatives, giving theoretically exact

homogeneous-space propagation.
When acting on a plane wave (11), the spherical volume gradient (4) becomes
rswð~r,tÞ ¼
1

4pq2

o

oq

Z 2p

0

Z p

0

n̂wð~r þ~r0,tÞq2 sin hdhd/

� �

¼ 1

4pq2

o

oq
q2

Z 2p

0

Z p

0

n̂ ei
~k�~r0 sin hdhd/

� �
wð~r,tÞ: ð14Þ
The integrals in (14) express the standard relation between spherical Bessel functions and surface integrals

of spherical harmonics. See for example, Stratton [7, Section 7.7, Eq. (60)]. The spherical Bessel function

integral is
in4pjnðkqÞPm
n ðcos aÞ

sinðmbÞ
cosðmbÞ

¼
Z 2p

0

Z p

0

ei
~k�~r0Pm

n ðcos hÞ
sinðm/Þ
cosðm/Þ

sin hdhd/, ð15Þ
where jn is the spherical Bessel function of order n, and Pm
n is the associated Legendre polynomial. Using

(15) and (12), the integrals in (14) become
rswð~r,tÞ ¼
1

4pq2

o

oq2
i4pq2j1ðkqÞ
� �

k̂wð~r,tÞ: ð16Þ
The derivative is best handled by using the spherical Bessel differentiation formula [8, Eq. (10.1.23)]
d

zdz

� �m

½znþ1jnðzÞ� ¼ zn�mþ1jn�mðzÞ: ð17Þ
By application of (17) to (16), one obtains the effect on the plane wave of the volume gradient operator
rswð~r,tÞ ¼ ij0ðkqÞ~kwð~r,tÞ: ð18Þ

Now set the radius q = aDg, where a is the radius of the operator sphere in grid steps. With all the terms of the

volume gradient found, the various integrals in the volume divergence and volume curl have been solved for

vector planewaves. The volumegradient, divergence, and curl of some scalarwor vector~Aplanewave become:
rswð~r,tÞ ¼ ij0ðkaDgÞ~kwð~r,tÞ, ð19Þ

rs �~Að~r,tÞ ¼ ij0ðkaDgÞ~k �~Að~r,tÞ, ð20Þ

rs �~Að~r,tÞ ¼ ij0ðkaDgÞ~k �~Að~r,tÞ: ð21Þ

The key feature of the results (19)–(21) is the j0(kaDg) factor. As will be shown, this factor allows time-

domain algorithms constructed with these volume operators to be exact. Note that if the algorithm radius
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a is zero, then (19)–(21) are the usual gradient, divergence, and curl of a plane wave, as expected from the

previously established correspondence of zero-sized spherical derivatives and point derivatives.

3.2. Dispersion relation for exact algorithms

The operators presented here can be used to construct numerically exact algorithms for hyperbolic

systems of coupled first-order equations, for example Maxwell�s equations. The time derivatives will be

approximated with the usual ‘‘leap-frog’’ central difference as used in the classical Yee FDTD algorithm

[1], with the volume divergence, volume gradient, or volume curl given by (4)–(6). Given a self-consistent

hyperbolic system of two coupled first-order equations
oF 1

ot
¼ h1D1F 2,

oF 2

ot
¼ h2D2F 1, ð22Þ
where the Dis are one of div, grad, or curl and the his are the given scale constants for each equation. The

system must have propagating solutions. A plane wave solution eið
~k�~r0�xtÞ is assumed (vector or scalar, as

required), and the numerical differentiation on the plane wave as given by (19)–(21). The usual finite-

difference time derivatives (13) are substituted into (22) and the resulting system is reduced and simplified.

There are three possible forms for each of the system�s equations
oF i

ot
¼ hir �~F j,

o~F m

ot
¼ hmrF n,

o~F p

ot
¼ hpr�~F q, ð23Þ
where the Fs, represent the fields of the system. The finite-difference time derivative (13) and the spherical

volume derivatives (19)–(21) acting on (23) with assumed plane wave solutions will produce
� 2

Dt
sin

xDt

2

� �
F i ¼ hij0ðkaDgÞ~k �~F j,

� 2

Dt
sin

xDt

2

� �
~F m ¼ hmj0ðkaDgÞ~kF n,

� 2

Dt
sin

xDt

2

� �
~F p ¼ hpj0ðkaDgÞ~k �~F q:

ð24Þ
Since the system is hyperbolic with propagating solutions, the dispersion relation results from simulta-
neously solving the algebraic system of equations produced by substituting (24) into (22) and eliminating

common factors. This yields
2

Dt
sin

xDt

2

� �� �2

¼ ðh1h2kj0ðkaDgÞÞ2: ð25Þ
Substituting the trigonometric form for the spherical Bessel function into (25) and simplifying yields
2

Dt
sin

xDt

2

� �� �2

¼ h1h2
sinðkaDgÞ

aDg

� �2

: ð26Þ
Note that, by design, this is functionally equivalent to the Yee 1D dispersion relation [2]. The algorithm

parameters (Dt,Dg,a) are chosen such that
h1h2Dt

2aDg

� �2

¼ 1, ð27Þ
or equivalently, so that the Yee algorithm�s Courant number, s, is
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s ¼ cDt

Dg
¼ jh1h2jDt

Dg
¼ 2a, ð28Þ
where c = |h1h2| is the wave speed. With this choice of parameters the coefficients of the sine functions in
(26) are unity. Taking the square-root and the arcsine of both sides of (26) and simplifying produces
x ¼ jh1h2jk ¼ ck, ð29Þ

which is the ideal homogeneous space continuum result. In order for (29) to be true we must also have

spatially and temporally band-limited waves because the computation is sampled in space and time
x 6
p
Dt

and jkxj,jky j,jkzj 6
p
Dg

: ð30Þ
A surprising aspect of the stability and exactness condition (27) is that it can be imposed for any Dt because

the radius a is a free parameter of the algorithm. It is unknown if practical versions of this algorithm work

for large time steps.

The stability limit SL can be obtained by solving the dispersion relation (26) for the angular frequency

using the substitution SL = cDt/Dg
2pf ¼ x ¼ 2

Dt
arcsin

SL

2a
sinðkaDgÞ
�� ��� �

: ð31Þ
Stability requires that x be real-valued for all grid-sample-permitted ~k vectors. For this algorithm the

argument of the arcsin function must be between negative and positive unity, inclusive. Thus, the stability

limit SL as a function of the radius a is given by
1

SLðaÞ
¼ max

~k
jkx j,jky j,jkz j6 p

Dg

1

2a
sinðkaDgÞ
�� ��� �

: ð32Þ
The solution for SL can be explicitly written with two cases
SLðaÞ ¼
2a

sinð
ffiffi
3

p
paÞ , a < 1

2
ffiffi
3

p ,

2a, a P 1

2
ffiffi
3

p :

(
ð33Þ
Thus, for small spheres (first case) the stability limit is greater then the exactness condition, and for large

spheres (second case) the stability limit and the exactness condition are equal.

3.3. Electromagnetics dispersion relation

A specific example of obtaining a dispersion relation for electromagnetics starts with Maxwell�s curl

equations in homogeneous source-free space
�
o~E
ot

¼ r� ~H , l
o~H
ot

¼ �r�~E, ð34Þ
where~E, ~H are the electric and magnetic fields, and �, l are the permittivity and permeability. Applying (13)

and (21) to each term of (34) for an assumed vector plane wave solution yields
� 2i�

Dt
sin

xDt

2

� �
~E ¼ ij0ðkaDgÞ~k � ~H ,

� 2il
Dt

sin
xDt

2

� �
~H ¼ ij0ðkaDgÞ~k �~E:

ð35Þ
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Eliminating one of the fields, chosen here to be ~H , produces a wave equation in the remaining field
4

c2D2
t

sin2 xDt

2

� �
~E ¼ �j20ðkaDgÞ~k � ð~k �~EÞ ¼ j20ðkaDgÞk2~E, ð36Þ
where c ¼ 1=
ffiffiffiffiffi
�l

p
is the wave speed. Eliminating the remaining common factors gives the dispersion relation
4

c2D2
t

sin2 xDt

2

� �
¼ k2j20ðkaDgÞ ¼

1

ðaDgÞ2
sin2ðkaDgÞ: ð37Þ
This is the same as the Yee 1D dispersion equation, so the previous stability and exactness conditions (27)

and sampling limits (30) apply. Then using these conditions the dispersion relation becomes
x ¼ ck, ð38Þ

which is the ideal result up to the sampling limits.

3.4. Theory summary and comments

Von-Neumann stability analysis is strictly applicable to an unbounded, homogeneous region. In the

Yee algorithm inhomogeneous spaces are stabilized in the region with the greatest wave-speed, then

the slower wave-speed regions will be stable (though not necessarily sufficiently sampled). This piecewise

homogeneity method typically produces stable algorithms. Analysis more complicated than the Von-

Neumann method is required for general stability analysis of inhomogeneous problems, and is not con-
sidered here.

The same piecewise concept can be applied to a spherical derivative algorithm, stabilize exactly in the

region with the greatest wave-speed, then the slower wave-speed regions will be stable. However, because

the radius of the operator is a free parameter, spherical derivatives can be defined to be exact in all (piece-

wise homogeneous) material regions. One simply needs a spherical operator with radii matched to the mate-

rials in each region, that is, a different sized sphere in each material region as given by (27), keeping a

constant time step throughout the space. Sampling conditions must also be satisfied in all regions with

either approach. It is unknown if practical algorithms are stable with these approaches.
Given proper sampling of the variables, we have defined spherical derivative operators which combined

with the Yee central-difference time-derivative theoretically produces exact propagation in a homogeneous

region. The exactness condition is stable for any time-step. It is important to distinguish between the

theoretical spherical derivatives, which are spheres of some chosen radius, and the following Shannon sam-

pling theory computer program implementations. Sampling theory calculations involve sums over the

entire domain. The result is a global range computation of the finite sized operator. This global range

results from the sampling theory calculations, it is an implementation detail, the mathematical operator

is local to a finite spherical region.
4. Proof-of-principle algorithms

In order to test the concepts of the volume operators presented here, a canonical problem is solved ana-

lytically and numerically with the classical Yee and volume algorithms. The test case is a cubic resonator,

with a volume of L3 cubic meters. This is discretized withM = 10 cells in each axis, so L = MDg. The source

and sample point is centered in the resonator. The resonator walls are aligned with the grid. The electro-
magnetics resonator boundary is a perfect electric conductor (PEC).

The electromagnetic source and sample is the two center-most Ez nodes, two nodes are required because

of the symmetries of the electromagnetics Yee grid. The Ez grid will have (M + l)2M nodes. The Ez nodes
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are zero on the x constant and y constant boundary surfaces, there are no Ez. nodes in the z constant

boundary surfaces. Centering the source and sample requires M even. The other ~E components, and the
~H components are staggered around Ez in the usual Yee grid.

The test resonators are sampled at the center of the cubic domain, the resulting time series is Fourier

transformed with a raised-cosine window (1 � cos(2pnDt/T), where T is the total simulation time) to obtain
amplitude spectra. The material parameters, wave speed, and space delta are all set to unity. All calcula-

tions are done with single precision (32 bit) floating point numbers. The computations are run for

65,536 time steps which is sufficient to see the approximately 107 dynamic range of the 32 bit computations.

The spectra are plotted from zero frequency to the Nyquist limit. To facilitate meaningful comparisons, all

algorithms are implemented on the usual Yee staggered cubic-cell grid with cDt=Dg ¼ 1=
ffiffiffi
3

p
.

4.1. Reference theory

The reference theory is an analytic resonator with band-limited ~k and x where the band-limiting

accounts for the sampled nature of the simulations. The eigenfunction sums are truncated to accomplish

the band-limiting. The coordinate systems for analysis are chosen so that the origin is at the center of

the cubic resonators, with walls aligned with coordinate surfaces. The interior region of the resonators will

be denoted as X, the boundary by oX and the closure by �X.
As usual, the electromagnetics simulations (the computer programs) update the fields using the coupled

first order system of Maxwell�s curl equations, constitutive relations, boundary conditions, and initial

conditions:
o~D
ot

¼ r� ~H �~J ,
o~B
ot

¼ �r�~E, ~r 2 X, t P 0, ð39Þ

~B ¼ l~H , ~D ¼ �~E, ~Jc ¼ r~E, ~r 2 X, t P 0, ð40Þ

n̂�~E ¼ 0, ~r 2 oX, t P 0, ð41Þ

~E � 0, ~D � 0, ~B � 0, ~H � 0, ~J � 0, ~r 2 �X, t < 0: ð42Þ

The difference between various algorithms is how they compute derivatives in (39). For analysis the elec-

tromagnetics resonator is modeled as a boundary-value problem with a forcing function. The model for
~E is obtained by eliminating ~H ,~B and ~D from (39)–(42), using the assumptions that the permittivity �
and permeability l are invariant scalars, and the conductivity r is zero. The validation model is:
r�r�~E þ 1

c2
o2~E
ot2

¼ �l
o~J
ot

, ~r 2 X, t P 0, ð43Þ

n̂�~E ¼ 0, ~r 2 oX, t P 0, ð44Þ

~E � 0, ~J � 0, ~r 2 �X, t < 0: ð45Þ
Eq. (43) is the governing partial differential equation, (44) gives the boundary conditions, and (45) are
causality conditions. The current density ~J is a centered, two cell long, z-directed filament
~Jð~r,tÞ ¼ dðxÞdðyÞðHðzþ DgÞ � Hðz� DgÞÞd0ðtÞẑ, ð46Þ

where d( ) is a delta function, H( ) is a step function, and d 0( ) is a doublet. The formal solution for the ~E
field is
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~Eð~r,tÞ ¼
X1

m,p¼1

ODD

X1

q¼0
EVEN

AX
mpqðtÞUX

mpqð~rÞx̂þ AY
mpqðtÞUY

mpqð~rÞŷþ AZ
mpqðtÞUZ

mpqð~rÞẑ
h i

, ð47Þ
where AX
mpqðtÞ is the x axis mode time dependence, and where UX

mpqð~rÞ is the x axis eigenfunction, and sim-

ilarly for the y and z axes. The symmetry and boundary conditions require that the m, p indices are odd, and

the q index is even. For notational simplicity let km = mp/L, kp = pp/L and kq = qp/L. Only the z axis eigen-

function and time dependence are needed for the validation tests. The z axis eigenfunction is
UZ
mpqð~rÞ ¼ cosðkmxÞ cosðkpyÞ cosðkqzÞ: ð48Þ
The z axis time-dependence is
AZ
mpqðtÞ ¼

�16c2

L3
sin Dgkg
� � ldðtÞ

kq
þ kq

�xmpq
� lxmpq

kq

� �
sin xmpqt
� �

HðtÞ
� �

, q > 0,

�8c2Dg

L3
ldðtÞ � lxmpq sin xmpqt

� �
HðtÞ

� �
, q ¼ 0,

8<
: ð49Þ
where the eigenvalues or resonant mode frequencies are
k2mpq ¼
p
L

� �2
ðm2 þ p2 þ q2Þ ¼ xmpq

c

� �2
: ð50Þ
Because of the sampling considerations, the indices must satisfy m, p < M and q < M � 1. The resonator is

discretized with M = 10 cells in each axis. Analytically, the potential between the sample nodes is given by a
line integral of the ~E field, along the z axis sample line. The value of ‘‘potential’’ extracted from the simu-

lations is the sum of the two central Ez field samples times the grid step size. The predicted potential is then

the truncated (band-limited) sum
UðtÞ ¼ �C1

XM�1

m,p¼1
ODD

XM�2

q¼0
EVEN

AZ
mpqðtÞ2Dg cos

qp
2M

� �
, ð51Þ
where C1 is a constant described in the next section.

4.2. Analytic and sampled sources

In the reference theory the source current density (46) consists of delta, step, and doublet functions. In

the simulations these become discrete functions, acting on space-time cells. The theoretical filament~J passes

through a point, in the simulation ~J acts on the entire area of a cell. Thus, we need to divide the ~J in the

simulation by D2
g.

A familiar sampling theory consideration is that two samples per wavelength are required, a frequency

domain condition. The time domain version of this is that two samples per pulse are required. Using the
two-samples per pulse condition the correct time series for a sampled delta in the simulation is (. . ., 0,1/
2,1/2,0, . . .)/Dt. This series is the properly sampled unit-amplitude delta, which has a spectral null at the

temporal Nyquist frequency. The theoretical source time-dependence is a doublet d 0(t). Taking a Yee time

derivative of the sampled unit-amplitude delta gives the series ð. . . ,0,1=2,0,� 1=2,0, . . .Þ=D2
t . Now, including

the current density area factor from above we get the series ð. . . ,0,1=2,0,� 1=2,0, . . .Þ=ðD2
tD

2
gÞ. The current-

density time series used in the simulation is (. . ., 0,1/2,0,�1/2,0, . . .), so the scale factor is then C1 ¼ D2
tD

2
g.

This C1 factor is used in (51) for the results presented.

As shown in [9], given the complete analytical solution of the sampled resonator, the frequencies that will
exist in the numerical grid can be precisely predicted by using the dispersion relation. After dispersion shift-

ing there will be a new list of frequencies and amplitudes. This new list is the set of basis functions for gen-

erating a dispersion-shifted theoretical prediction of the algorithm behavior. A plot of the last few time

steps of the potential sample and prediction is shown in Fig. 1. The dispersion-shifted theory uses (51), with
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all instances of xmpq replaced by the Yee dispersed frequencies. This plot shows that there is fair agreement

between the time-series data of the Yee-dispersed theoretical prediction and the simulation.
4.3. Sampling theory algorithms

In order to implement the algorithms presented here, some method of computing derivatives (4)–(6) is

required. Shannon�s sampling and reconstruction methods are used here. Such a computation is inefficient,

but simple to implement. A review of one-dimensional sampling theory calculation is presented first.

Given basis functions /, some band-limited function f(x) is exactly reconstructed at an continuously

varying arbitrary point from the discrete samples f(iDg) with the infinite sum
f ðxÞ ¼
X1
i¼�1

/
x
Dg

� i
� �

f ðiDgÞ, ð52Þ
where for Shannon reconstruction the basis function / is the sinc(x) = sin(px)/(px) function. Now suppose

we wish to compute the derivative of f. From (52) this becomes
f 0
x ¼

o

ox

X
i

/
x
Dg

� i
� �

f ðiDgÞ
 !

¼ 1

Dg

X
i

f ðiDgÞ/0 x
Dg

� i
� �

, ð53Þ
where / 0(x) = o/(x)/ox. The important observation is that algorithms only require the value of f 0(x) on a
discrete lattice, so the function / 0 can be pre-computed and called derivative coefficients C. In terms of

derivative coefficients, the derivative of f on the discrete lattice is just a weighted sum of the samples
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f 0ðxÞ ¼ 1

Dg

X
i

f ðiDgÞC
x
Dg

� i
� �

: ð54Þ
To find the derivative at one point we need to sum over all the samples. Eq. (54) is the direct-domain equiv-

alent of the 1D pseudo-spectral time-domain (PSTD) [10] algorithm spatial derivative. The algorithm

implementations presented subsequently to test spherical derivatives are 3D generalizations of (54), with

very complicated calculations required to obtain the coefficients. Nonetheless, the algorithm employs a

simple weighted sum over the volume to compute a spatial derivative at one point.

The 3D function reconstruction sum is
f ðx,y,zÞ ¼
X
i

X
j

X
k

/
x
Dg

� i
� �

/
y
Dg

� j
� �

/
z
Dg

� k
� �

f ðiDg,jDg,kDgÞ: ð55Þ
For notational simplicity let gð~rÞ ¼ /ðxÞ/ðyÞ/ðzÞ, and use vector notation for sum indices,~I ¼ ði,j,kÞ, so
(55) becomes
f ð~rÞ ¼
X
~I

g
~r
Dg

�~I
� �

f ðDg
~IÞ: ð56Þ
Now compute a spherical gradient of f
rsf ð~rÞ ¼ rs

X
~I

g
~r
Dg

�~I
� �

f ðDg
~IÞ ¼

X
~I

f ðDg
~IÞrsg

~r
Dg

�~I
� �

, ð57Þ
where the exchange of the summation and $s is permitted because the $s only operates on~r, and not on~I .
Additionally in an algorithm the sums are finite, so convergence issues do not apply. Just as in the 1D deriv-

ative example (54), the function rsgð~rÞ can be precomputed. Define the gradient update coefficients
~CGð~rÞ ¼ rsgð~rÞ ¼
o

oV

Z Z
oB

n̂gð~r þ~r0Þds ¼ 1

4pq2

o

oq

Z Z
oB

n̂gð~r þ~r0Þds, ð58Þ
where the surface integration is over the spherical surface of the operator. Eq. (58) can be expanded for

calculation as shown in (7). This is a very complicated calculation which is performed numerically for a

fixed radius. In terms of the coefficients, the spherical gradient, divergence, and curl are:
rswð~rÞ ¼
X
~I

~CG

~r
Dg

�~I
� �

wðDg
~IÞ, ð59Þ

rs � ~W ð~rÞ ¼
X
~I

~CG

~r
Dg

�~I
� �

� ~W ðDg
~IÞ, ð60Þ

rs � ~W ð~rÞ ¼
X
~I

~CG

~r
Dg

�~I
� �

� ~W ðDg
~IÞ, ð61Þ
where ~CG, ~CD and ~CC are the gradient, divergence and curl update coefficients. Eqs. (59)–(61) are weighted

sums over the volume. Depending on the contents of the coefficient arrays, they could provide classic Yee

(with almost all coefficients zero), higher-order Yee, direct-domain equivalent of PSTD, or other algo-
rithms. The spherical-derivative electromagnetics algorithm uses two staggered curls (61). Only one octant

of one component of ~CG needs to be computed, the other octants and components can be obtained from

simple symmetry considerations. Similar considerations allow finding the ~CD and ~CC coefficients from the
~CG if staggering is properly considered. For a collocated grid ~CG ¼ ~CD ¼ ~CC. In the Yee staggered grid
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used here there are simple fixed origin shifts, or staggers, between the ~E and ~H fields and the respective curl

coefficients.

Eqs. (59)–(61) directly translate to computer code. In the analysis wðDg
~IÞ refers to field samples with

physical units for the arguments. In the computer code these samples are referenced with integer indexes

independent of the physical scales. A field located at integer physical coordinates f ðDg
~IÞ is indexed with

the samples at integer indexes f ð~IÞ. Similarly, only integers index the coefficient arrays. Let the vector ~R
be the staggering vector in units of Dg, so ~R ¼ 0 for a collocated derivative. Let ~L ¼ ðl,m,nÞ be a second

index, referring to a possibly staggered coordinate. Then the spherical gradient, divergence, curl, and coef-

ficients at integer index points are given by
Fig. 2.
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rswð~LÞ ¼
X
~I

~CGð~L�~IÞwð~IÞ, ð62Þ

rs � ~W ð~LÞ ¼
X
~I

~CDð~L�~IÞ � ~W ð~IÞ, ð63Þ

rs � ~W ð~LÞ ¼
X
~I

~CCð~L�~IÞ � ~W ð~IÞ, ð64Þ

~CGð~LÞ ¼
o

oV

Z Z
oB

n̂gð~Lþ~r0=Dg þ~RÞds: ð65Þ
Eqs. (62)–(64) are weighted sums over the volume. To find the coefficients, expand (65) as in (7), take the

radial derivative, set the radius as per (27) with the condition cDt=Dg ¼ 1=
ffiffiffi
3

p
specified above, and numer-

ically perform the surface integration. As was the case in Section 3.1, once one has the gradient coefficients,

the coefficients are known for the equivalently staggered divergence and curl.

In practice the summations in (59)–(61) or (62)–(64) need to be carried out over the finite-sized model

space, hence the reconstruction-based computation is an approximation of the calculation. The algorithm

will not be exact, since the spherical derivatives are not exactly calculated. This also means that the disper-

sion relation (26) only approximately characterizes a reconstruction implementation of the spherical deriv-

ative algorithm.

4.4. Numerical results

Fig. 2 shows the results of our calculations for the electromagnetic resonator. The plots show the mag-

nitude of the FFT vs. frequency of the sample data. The top plot shows the theoretical prediction given by

(51). The middle plot is the result of a Yee algorithm simulation and the bottom plot is the spherical deriv-

atives algorithm. The Yee algorithm exhibits mode-splitting, combining, and shuffling [11,9], due to the

anisotropy of the Yee algorithm. The mode structure in the spherical algorithm is much better than the

Yee algorithm, but at higher frequencies splitting is clearly visible.
5. Conclusions and observations

The spherical operators presented here provide for theoretically exact 3D time-domain differential

equation solvers. The theory of exact 3D time-domain solvers can be used to guide the construction of

practical algorithms. We have shown the theoretical existence of 3D time-domain solvers which can, in

principle, be exact for any time-step size. While the volume algorithms provides very good performance
to the sampling limit, the O[n2] per axis cost is far too computationally expensive to be practical for much

larger model spaces than the small resonator used here. Nonetheless, we have a theoretical framework for

exact algorithms with a ‘‘magic’’ time step in 3D, which can be used to guide the construction of practical

algorithms.

A well known method to improve performance is to use fast transform techniques. Such methods would

still use the full space, i.e., the operators would remain global. Alternatively, preliminary testing suggests,

that practical algorithms can be made with some set of only local neighbor nodes contributing to the oper-

ators. Such local operators are much less computationally expensive than global reconstruction. The range
of the operator could be increased or decreased to improve accuracy or speed. A method to reduce the

needed computational range of the volume operators is to use reconstructors with faster spatial falloff than

the Shannon reconstructors. This can be accomplished by modifying the rectangular spectrum of the
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Shannon reconstructor to have a slower falloff in the spectrum of the reconstructor – since a slower spectral

falloff will produce a faster falloff in the reconstructor. The purpose of a localized reconstructor is to retain

the same algorithmic cost as the Yee algorithm, albeit with a much larger constant cost factor.

Our test implementations show potential of the method, but an efficient implementation that exploits

this theory has not yet been obtained. Our tests demonstrate solvers for both acoustics (not included here)
and Maxwell�s equations, with good results.
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